The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

نویسنده

  • Oğuzhan Demirel
چکیده

In [Comput. Math. Appl. 41 (2001), 135–147], A.A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar’s work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry

In this note, we present the hyperbolic Menelaus theorem in the Poincaré disc of hyperbolic geometry. 2000 Mathematical Subject Classi…cation: 30F45, 20N99, 51B10, 51M10 Keywords and phrases: hyperbolic geometry, hyperbolic triangle, gyrovector 1. Introduction Hyperbolic Geometry appeared in the …rst half of the 19 century as an attempt to understand Euclid’s axiomatic basis of Geometry. It is ...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

A New Proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry

In this study, we present a proof of the Menelaus theorem for quadrilaterals in hyperbolic geometry, and a proof for the transversal theorem for triangles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010